
Extending a WebAssembly formalisation

Maja Trela

Trinity College

May 2022

Submitted in partial fulfillment of the requirements for the
Computer Science Tripos, Part III



Total page count: 52

Main chapters (excluding front-matter, references and appendix): 38 pages (pp 9–46)

Main chapters word count: 10975

Methodology used to generate that word count:

$ texcount -template="{SUM}\n" report.tex

10975

2



Declaration

I, Maja Trela of Trinity College, being a candidate for Computer Science Tripos, Part III,

hereby declare that this report and the work described in it are my own work, unaided

except as may be specified below, and that the report does not contain material that has

already been used to any substantial extent for a comparable purpose.

Signed: Maja Trela Date: 21.05.2022

3



Acknowledgements

This project would not have been possible without its originator and co-supervisor Conrad

Watt, who had a clear idea of the project’s goals and scope, as well as the techniques

to make it feasible. He is the main contributor to WasmCert-Isabelle and the author of

the interpreters involved. We collaborated closely throughout the course of the project,

with him occasionally extending or modifying my proofs as a consequence of updating the

repository to reflect more recent revisions of the WebAssembly specification. Moreover,

Peter Lammich has been of great help, having supplied us with examples of use of his

separation logic library and teaching me how to use sep auto effectively.

I’d also like to thank my friends for keeping my sanity by making me leave my room every

now and then while simultaneously pressuring me to write down the project report in

time.

4



Abstract

WebAssembly is a growing standard for executable content on the Web. Due to its relative

importance, small size, and precise specification, it has already been subject to formal

verification in order to ensure its safety [1]. This project expands the existing efforts in

two distinct areas. The first area is the instantiation mechanism, responsible for loading

a WebAssembly module before execution; a missing proof of safety of instantiation is

completed. The second area, of a larger focus, is a verifiable interpreter with a good

enough performance for practical use; this project proves its soundness by refinement,

i.e. showing its equivalence to an earlier verified interpreter, utilising monadic state and

separation logic for that purpose. As a result, the improved verified interpreter was

adopted in practice by the Bytecode Alliance for use in its testing infrastructure.
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Chapter 1

Introduction

Writing code is difficult for humans, and writing correct code especially so. Inevitability

of bugs is thus commonly accepted; one can always release a patch fixing the newly-

discovered issue after all. That approach is perfectly reasonable for most use cases, where

malfunctions cause relatively little harm. There are however cases when the trade-offs

shift; whether it’s because the application is entrusted with a major responsibility, or

in widespread use on billions of devices, an unknown issue surfacing at an inconvenient

time, or, possibly worse, opening up a security vulnerability, may be catastrophic in its

consequences. In those cases one can increase testing to reduce the probability of a bug

slipping through to release, and write code more defensively to reduce the probability of

a bug arising at all; can one however ever be sure?

Formal verification is a technique bringing us one step closer to certainty. The approach

switches; instead of trying to show counterexamples to a program’s correctness, maybe

we can prove it correct? A proof of one’s desired properties of the system, expressed

in formal mathematics, could show that bugs violating those properties cannot possibly

occur1. Moreover, proof assistant software such as Isabelle removes the need to trust that

the humans writing the proof didn’t make a mistake themselves.

One effective target for formal verification is WebAssembly, a bytecode format intended

for executable content on the Web. It includes a precise specification of executing said

bytecode which browsers and other platforms supporting it have to follow. One of the

promises of WebAssembly is enabling both fast and safe execution; the specification pre-

scribes a validation step, and claims that certain checks performed at runtime2 can be

safely skipped for validated bytecode, improving execution speed. Formally verifying that

claim allows us to conclude that an implementation of WebAssembly is safe provided it

follows the specification. In addition, one can write an interpreter of WebAssembly and

formally verify that it conforms to the specification. Accordingly, both of those goals have

1Assuming perfect hardware and consistency of mathematics.
2Example: checking whether attempted write to an array is within the bounds of said array.
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been carried out already [1]; successfully validated WebAssembly bytecode is known to

be safe to run in the manner prescribed by the specification, and a verified interpreter for

WebAssembly exists.

1.1 Project overview

This project is basing on WasmCert-Isabelle, a repository of formal proofs relating to

WebAssembly which in particular contains the aforementioned proof of safety and the

verified interpreter; naturally, the proof assistant used by this project is Isabelle.

The first, smaller part of the project is to complete the missing safety proof for a phase of

WebAssembly execution called instantiation. Instantiation is the process of converting a

module into its runtime representation, allocating the state in memory as to make it ready

for execution. The goal is to show that the result of instantiation fulfills the properties

sufficient for it to be safe to execute.

The second, larger part is to verify a WebAssembly interpreter fast enough for practical

use. The interpreter in question was a previously unverified existing side project basing

on WasmCert-Isabelle, with a similar structure to the existing verified interpreter. The

goal is to verify the fast interpreter by proving that the two interpreters always return

the same result.

Both goals of the project were achieved, with extra work being focused on verifying the

soundness of further optimisations to the fast interpreter. Moreover, a bug was found and

fixed in the fast interpreter in the process of proving its soundness.

Notably, as a result of this project, the improved verified interpreter was incorporated

into Bytecode Alliance’s WebAssembly testing infrastructure. The Bytecode Alliance is a

partnership of corporations with an interest in advancing WebAssembly’s ecosystem across

the Web; its major members include companies such as Fastly, Mozilla, and Microsoft.

We are thus boasting a rare claim of the result of a formal verification project being

adopted by major industry players and used in practice to improve software reliability.

It is rare for formal verification projects to verify the entire process from source code to

executable file. While this means the resulting program is not certain to be bug-free,

formal verification nevertheless reduces the scope in which bugs can arise. In this manner

we assume the correctness of the OCaml compiler, Isabelle’s code extraction tools, and

custom translations from Isabelle into OCaml.

Results of this work are planned to be included in a paper submission to the POPL 2023

conference. The submission is in preparation at the time of writing.
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Chapter 2

Background

2.1 WebAssembly

WebAssembly [2] (sometimes abbreviated as Wasm) is an executable low-level bytecode

standard, mainly intended for use on the Web (but not limited to). Prior to its introduc-

tion, JavaScript was de facto the only standard for client-side executable content (and

at the time of writing it is still the dominant language for that purpose) and thus Web-

Assembly was designed from scratch to provide an alternative where JavaScript is flawed,

stating safety, fast execution, portability, and low binary size as its design goals.

2.1.1 Overview

Architecture

WebAssembly, just as any other bytecode standard, specifies its execution model, also

called the virtual machine. The actual machine code the bytecode is compiled to might

diverge from the virtual machine for performance reasons, but the result of executing

the bytecode has to be observably the same as if run on the virtual machine. In Web-

Assembly’s case the virtual machine is a stack machine; instructions are defined in terms

of manipulating the top of a stack of operands, rather than a set of registers. A list

of instructions is called an expression; executing the instructions in order results in the

expression being evaluated.

WebAssembly also has a concept of the type of an expression, defined as the list of types

of operands popped from the stack and pushed onto it when the expression is evaluated.

As a corollary, in well-typed programs the shape of the stack at any point in the program

can always be determined statically; the actual WebAssembly engine in the browser thus

can optimise away the stack using that knowledge.
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Control flow, rather than provided by a goto equivalent as might be expected in a low-

level language, is defined in a structured way, the specifics of which might however be

somewhat unintuitive at a first glance. The block instruction defines an instruction block;

the br (“branch”) instruction allows exiting a block early (similarly to break in many

programming languages). Branching on condition is provided by the if instruction, which

specifies two blocks of instructions – one for “true” and one for “false”. Moreover, the

loop instruction makes constructing loops possible; executing br while within the loop

block restarts the loop (similarly to continue in many programming languages), and

letting execution reach the end of the loop block exits the loop.

Although statically checked, WebAssembly allows some instruction to trap, i.e. abort

execution and hand control back to the host environment. Not all types of faults can be

practically eliminated at compile time, e.g. there is no way of knowing in general whether

a given division operation will end up performing division by zero or not. In those cases

the trap mechanism provides a way to “fail safely”.

Organisation

At its top level, WebAssembly code is organised into modules, as shown in Figure 2.1.

The core content of a module are functions, memories, tables, and globals, explained in

more detail below.

Figure 2.1: Formal definition of a module as written in WebAssembly specification.

module ::= { types vec(functype),

funcs vec(func),

tables vec(table),

mems vec(mem),

globals vec(global),

elems vec(elem),

datas vec(data),

start start?,

imports vec(import),

exports vec(export) }

Functions are the basic unit WebAssembly instructions are organised into. A function

contains a typed expression pushing values onto the stack, and can both take multiple

arguments (by popping them from the top of the stack and saving them as local variables)

and return multiple values (by leaving them at the top of stack at the end). Moreover,

it may contain a number of local variables aside from the arguments; the expression may

contain instructions for reading from and writing to local variables.
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Memories are raw arrays of bits with no additional type information. WebAssembly code

can freely read from and write to a given memory, reinterpreting the raw bits as a numeric

type. There might be multiple memories in a program.

Tables provide a mechanism for runtime polymorphism of functions. A table is a read-

only array of function indices, initialised at runtime. An expression, instead of calling

a function directly, might instead call a function in the table as specified by the index

given at runtime. The caller needs to specify the function type of the function called; the

function call only proceeds if the type of the function at the specified index in the table

agrees with the type declared by the caller, otherwise a trap occurs.

Globals are variables which can be accessed anywhere in the program. An expression may

contain instructions for reading from a global variable, as well as writing to it if the global

variable is specified as mutable.

Aside from the above key concepts, a module specifies initializer expressions for each

global variable, evaluated when the module is loaded. In a similar manner, a module

may contain element segments and data segments, which are initializer expressions for

fragments of tables and memories respectively. Additionally, a module may specify the

execution entry point if it’s intended to be executed directly rather than used as a library.

Lastly, a module may contain imports, which are definitions to be imported from other

modules and which can be used throughout the module, as well as exports, which are

definitions visible to other modules for import. When loaded, the module becomes an

instance.

2.1.2 Semantics

WebAssembly is a rare case of a language with precisely defined semantics in a formal

manner. It is described in terms of operational semantics with a small step reduction

relation, the overview of which is written below.

First, a few more concepts are introduced. A store is a collection of runtime representa-

tions of functions, memories, tables, and globals. In other words, the store holds global

state. A frame contains a list of values of local variables as well as the reference to the

current module instance.1

Moreover, the instruction set is now augmented with administrative instructions. Ad-

ministrative instructions only exist for the ease of defining what happens during execu-

tion formally by unifying similar constructs; modules may contain only basic (i.e. non-

administrative) instructions. One such particular instruction is invoke, with the meaning

of calling a function without further indirection; this way the description of handling both

1One can think of a frame as analogous to a call stack frame of a method in an object-oriented
language; the instance is the object the method is executed from.
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direct and indirect (i.e. from a table) function calls doesn’t repeat needlessly. Similarly,

the label instruction is used to unify the semantics of block, loop, and if. A label

contains both the instruction block as well as its continuation, expressed as the list of

instructions to insert after the block when br is used; block reduces to a label with no

instructions to insert, while loop contains a copy of itself.

Execution is described in terms of single steps (i.e. the reduction relation) performed on

a runtime configuration, which consists of a store, a frame, and a list of (possibly ad-

ministrative) instructions. Interestingly enough, the operand stack is implicitly contained

within the instruction list; the const (pushing a constant onto the stack) instructions

at the start of the list are treated as the stack itself. As an example, numeric binary

operators are defined in a generic way as

where c ∈ binop(c1, c2)
(const c1) (const c2) binop ↪→ (const c) (binop-reduce)

i.e. a binary operator (such as add or sub) pops two values from the stack, and pushes

a new value as a result. As another example, the call (direct function call) instruction

contains the index of the function to call as defined in the module; therefore the conversion

from call to invoke needs to look up the function address stored in the module instance.

where F.inst.funcs[x] = a
F ; (callx) ↪→ F ; (invoke a) (call-reduce)

The reduction for each instruction is defined in a similar manner, possibly using and/or

updating the store and/or the frame, leading to the complete reduction relation on runtime

configurations, denoted by

S;F ; instr∗ ↪→ S ′;F ′; instr′∗.

2.1.3 Typing

As mentioned earlier, WebAssembly boasts a static type system, which allows it to skip

some of runtime checks required otherwise in more dynamically typed languages like

JavaScript, without compromising safety.

The basic types of WebAssembly are the value types. A value type can be 32 or 64 bit,

integer or float. Subsequently, function types consist of the list of types of values popped

from the stack and a list of those pushed onto it. In a well-typed WebAssembly program,

each subexpression has a function type.

To define the typing relation rigorously, we need a context C, containing type information

about functions and global state in the instance the expression is being executed in. Using
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the earlier example, the typing rule for a binary operator on value type t is

C ` t.binop : [t t]→ [t] (binop-typing)

i.e. it pops two values of type t and pushes a single value of type t in return. Meanwhile,

the type of call is determined with the use of the context:

C.funcs[x] = [t∗1]→ [t∗2]

C ` callx : [t∗1]→ [t∗2]
(call-typing)

Typing rules for expressions proceed in this manner.

Similarly, there are typing rules for defining that a store type-checks correctly, as well as

a few others. Without diving into tiresome details, the end result is the typing relation

` S;F ; instr∗ : [t∗]

which, broadly speaking, is intended to guarantee that repeated application of the ↪→
reduction rule on a runtime configuration S;F ; instr∗ either is always possible or ends in

an allowed end state; moreover, if that end state does not trap, the remaining stack forms

a list of values of types t∗. This can be formalised in the classic form of Preservation and

Progress theorems for a type system:

Theorem (Preservation)

If

` S;F ; instr∗ : [t∗]

and

S;F ; instr∗ ↪→ S ′;F ′; instr′∗

then

` S ′;F ′instr′∗ : [t∗].

Theorem (Progress) If ` S;F ; instr∗ : [t∗] then either

• instr∗ is a single trap instruction

• instr∗ contains only values (represented as const instructions)

• there exists a runtime configuration S ′;F ′; instr′∗ such that

S;F ; instr∗ ↪→ S ′;F ′; instr′∗.

In other words, those theorems claim that WebAssembly programs which pass typing

checks don’t do unpredictable things.
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2.2 Isabelle

The goal of formal verification projects tends to be a proof of program’s certain properties.

However, a proof written and verified by humans only is not considered to be trustworthy

enough – humans are notoriously fallible, and the theorems to be proven tend to be of

tedious nature, further increasing the likelihood of glossing over important details and

making it difficult for others to audit the proof. Instead, the goal is the have a proof that

can be verified automatically by a computer.

One such toolset for formally verified proofs is Isabelle [3], a generic interactive proof

assistant initially developed at the University of Cambridge and the Technical University

of Munich. It enables writing and composing machine-verified proofs of formally-written

statements. Moreover, Isabelle does not commit to a particular formal logic system;

however, Isabelle/HOL (Higher-Order Logic) is most commonly used and thus assumed

here.

As an example, Listing 2.1 shows an Isabelle proof of (a+ b)(a− b) = a2− b2 for a, b ∈ N.

One way to prove it is to apply distributivity laws; hence we can write apply (simp

add:nat distrib) to tell Isabelle to simplify the statement to be proved (also known as

the goal), using distributivity of multiplication. Once we do so, pointing the cursor at line

2 within the GUI packaged with Isabelle helpfully reveals that simplification succeeded

and that the current goal is a ·a− b · b = a2− b2. Adding that x2 = x ·x finishes the proof.

Listing 2.1: Isabelle example.

1 lemma "(a+b)*(a-b) = a2 - b2 " f o r a b : : n a t

2 apply ( simp a d d : n a t d i s t r i b )

3 apply ( simp add:power2 eq square )

4 done

In general, proofs in Isabelle follow the structure of statements followed by their proofs,

composed of applications of (possibly automated) proof methods. The automation facilities

of Isabelle allow the human writing the proof to not write down every single step of a

rigorous proof; ideally, only the interesting or non-trivial steps are written down explicitly,

with automated proof methods filling the in-between. In particular, Sledgehammer [4] is

an effective and versatile tool for finding proofs automatically with little user involvement.

Other tools contained within Isabelle worth noting are Isabelle/Isar, a language for writing

structured, human-like proofs (rather than a string of apply steps), and Isabelle/Eisbach,

a scripting language for custom automated proof methods.

Isabelle has been used for a number of formal verification projects before. Likely the

most famous such project involving Isabelle is machine verification of correctness of the

seL4 microkernel [5], comprised of 8700 lines of C code. Another example is the Java-

like programming language Jinja [6], formalised and proven to be type-safe in Isabelle,
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including an Isabelle-verified interpreter as well. It goes without saying that WasmCert-

Isabelle, the repository this project is building on, also is one of those projects.

As a particular interest to formal verification, a fragment of Isabelle/HOL can be treated

as an ML-like functional language. Expressions written in that fragment can be exported

as ML, OCaml, Haskell, or Scala code and executed there, a process called code extraction.

Code extraction is of particular relevance to producing a verified interpreter since the

source code of the interpreter can be native to Isabelle/HOL, and thus easy to reason

about using Isabelle.

This report contains multiple listings of Isabelle code illustrating the work accomplished.

To keep the report concise, Isabelle’s syntax is not explained in detail, however the fol-

lowing points should be noted:

• Generally speaking, quotes signify the boundary between the language of logic and

the outer proof language.

• TeX maths symbols are often used as generally accepted in mathematical notation.

Moreover, one can easily define syntactic sugar for a particular concept in order to

use mathematical symbols in place of the name of the function or predicate (e.g.

note Listing 2.2 for ; and ` as syntactic sugar for reduce and b e typing).

• Notation is ML-like: function application is written as f x y (rather than f(x, y)),

a⇒ b⇒ c signifies a function taking arguments of types a and b and returning c,

parametric types are written as ’a t (e.g. int list for a list of integers). Higher-

order functions (that is, taking a function as an argument) are common.

• Lists: x#xs denotes prepending the element x to a list xs; xs@ys denotes appending

two lists xs and ys; xs!i denotes the i-th element of a list xs.

• r.f x denotes the field f of a record x of type r, and can be written as f x in

absence of collisions with other names.

2.3 WasmCert-Isabelle

Similarly to the projects mentioned earlier, WebAssembly also has been subject to formal

verification in Isabelle; [1] proved WebAssembly’s type system to be sound, as well as

included a verified interpreter. Furthermore, the formalisation has been updated and

expanded to follow new developments in WebAssembly as well as reduce the unverified

bits [7]. The result of that work is the WasmCert-Isabelle repository [8], which includes

WebAssembly’s specification ported to Isabelle, as well as the proof of soundness of the

type system, the interpreter, and the interpreter’s proof of soundness.
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Listing 2.2: Reduction and typing rules in WasmCert-Isabelle

1 induc t i v e r educe s imp le : : "[e list, e list] ⇒ bool" ("L_M ; L_M" 60) where

2 [ . . . ]

3 | binop Some:"Japp_binop op v1 v2 = (Some v)K
4 =⇒ L[$Cn v1, $Cn v2, $(Binop t op)]M ; L[$Cn v]M"
5 [ . . . ]

6

7 induc t i v e reduce : : "[s, f, e list, s, f, e list] ⇒ bool" ("L_;_;_M ; L
_;_;_M" 60) where

8 [ . . . ]

9 | c a l l : "Ls;f;[$(Call j)]M
10 ; Ls;f;[Invoke ((inst.funcs (f_inst f))!j)]M"
11 [ . . . ]

12

13 induc t i v e b e typ ing : : "[t_context , b_e list, tf] ⇒ bool" ("_ ` _ : _"

60) where

14 [ . . . ]

15 | binop : "binop_t_num_agree op t

16 =⇒ C ` [Binop t op] : ([T_num t,T_num t] _> [T_num t])"

17 [ . . . ]

18 | c a l l : "Ji < length(func_t C); (func_t C)!i = tfK
19 =⇒ C ` [Call i] : tf

20

21 definition reduce_trans where

22 " r educe t r an s ≡ r t r a n c l p (λ( s , f , e s ) ( s ' , f ' , e s ' ) . Ls ; f ; e s M ; L s ' ; f ' ; e s ' M)"

As an example, definitions listed in Listing 2.2 reflect the (binop-reduce), (call-reduce),

(binop-typing), and (call-typing) rules stated earlier when describing WebAssembly’s se-

mantics.

The reduce trans predicate in Listing 2.2 is worth noting as it appears a few times in

this document – it expresses the concept of evaluating an expression for multiple steps,

being defined as the transitive closure of the reduction relation.

Similarly, the Preservation and Progress theorems are stated in WasmCert-Isabelle as

shown in Listing 2.3.

Listing 2.3: Preservation and progress theorems in WasmCert-Isabelle

1 theorem p r e s e r v a t i o n :

2 assumes "` s;f;es : ts"

3 "Ls;f;esM ; Ls';f';es'M"
4 shows "(` s';f';es' : ts) ∧ store_extension s s'"
5

6 theorem p r o g r e s s :

7 assumes "` s;f;es : ts"

8 shows "const_list es ∨ es = [Trap] ∨ (∃a s' f' es'. Ls;f;esM ; L
s';f';es'M)"
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This project uses WasmCert-Isabelle as its base, expanding on and contributing back to

the repository, in a manner similar to software engineering. New proofs take advantage

not only of the definitions of WebAssembly’s syntax, semantics, typing, and interpreter,

but also invoke lemmas proven previously in existing work. The result is a repository of

formal proofs of WebAssembly’s properties extended by this project’s achievements.
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Chapter 3

Instantiation

Similarly to other programming languages, WebAssembly provides a mechanism for code

organisation in the form of modules, as shown in Figure 2.1 (Section 2.1.1). Naturally,

a module needs to be converted to its runtime representation before its contents can be

executed; the process of doing so is called instantiation in WebAssembly terminology,

and results in a module instance (called just an “instance” from now on). In particular,

instantiation is the stage which ensures that the module is well-typed and thus safe to

run. Moreover, instantiation resolves module imports and exports, similar to linking in C;

a module instance can therefore call external libraries, as well as import system-specific

constants.

The WebAssembly standard provides a precise definition of WebAssembly semantics, in-

cluding instantiation. Moreover, the WebAssembly specification defined typing relations,

and claims that well-typed runtime configurations are safe to execute; a claim formally

verified and contained in WasmCert-Isabelle (see [1], also Listing 2.3). However, the

repository did not include the proof that performing instantiation produces a well-typed

runtime configuration. That hole meant that while well-typed runtime configurations

were known to be safe, there was no full guarantee that instantiating and executing a

module is safe; it could be the case that the resulting instance is not well-typed, making

the soundness theorems inapplicable.

One of the goals of this project was to formally verify that the result of instantiation is

well-typed, closing the hole mentioned above. This chapter explains what was achieved

as well as the technical challenges encountered in achieving that goal.

3.1 Specification

Instantiation is possibly the largest single definition in the WebAssembly specification.

At a high level, instantiation takes a store, a module, and a list of values to be supplied
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as imports to the module, and as a result updates the store and produces an instance

corresponding to the module. More specifically, instantiation:

• Verifies that the module is well-formed and compatible with the provided imports.

• Allocates the module, i.e. adds the functions, memories, tables, and globals from

the module to the store, supplying the imports where required.

• Initialises the tables and memories as specified in element and data segments.

The formal specification, as expressed in Isabelle, is explained in slightly more detail

below. It is not essential to understand the definition in full; it is listed to show what the

project has achieved in concrete terms.

3.1.1 instantiate

Listing 3.1: Definition of instantiation in WasmCert-Isabelle

1 abbreviation "reduces_to s f bes v ≡ reduce_trans (s,f,$*bes) (s,f,[$v])"
2 abbreviation "elem_in_bounds s inst off e ≡
3 nat_of_int off + length (e_init e) ≤ tab_size ((tabs s)!((inst.tabs

inst)!(e_tab e)))"

4 abbreviation "data_in_bounds s inst off d ≡
5 nat_of_int off + length (d_init d) ≤ mem_length ((mems s)!((inst.mems

inst)!(d_data d)))"

6 abbreviation "elem_to_init_tab inst off e ≡
7 Init_tab (nat_of_int off) (map (λi. (inst.funcs inst)!i) (e_init e))"

8 abbreviation "data_to_init_mem inst off d ≡ Init_mem (nat_of_int off)

(d_init d)"

9

10 induc t i v e i n s t a n t i a t e : : "s ⇒ m ⇒ v_ext list ⇒
11 ((s × f × (e list)) × (module_export list)) ⇒ bool" where

12 "Jmodule_typing m t_imps t_exps;

13 list_all2 (external_typing s) v_imps t_imps;

14 alloc_module s m v_imps g_inits (s', inst, v_exps);

15 f = L f_locs = [], f_inst = inst M;
16 list_all2 (λg v. reduces_to s' f (g_init g) (C v)) (m_globs m) g_inits;

17 list_all2 (λe c. reduces_to s' f (e_off e) (Cn (ConstInt32 c)))

(m_elem m) e_offs;

18 list_all2 (λd c. reduces_to s' f (d_off d) (Cn (ConstInt32 c)))

(m_data m) d_offs;

19 list_all2 (elem_in_bounds s' inst) e_offs (m_elem m);

20 list_all2 (data_in_bounds s' inst) d_offs (m_data m);

21 (case (m_start m) of None ⇒ [] | Some i_s ⇒ [Invoke ((inst.funcs

inst)!i_s)]) = start;

22 map2 (elem_to_init_tab inst) e_offs (m_elem m) = e_init_tabs;

23 map2 (data_to_init_mem inst) d_offs (m_data m) = e_init_mems
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24 K =⇒ instantiate s m v_imps ((s', f, e_init_tabs@e_init_mems@start),

v_exps)"

Listing 3.1 contains the top-level definition of WebAssembly instantiation, and is broadly

explained below.

Instantiation, expressed using the instantiate predicate, takes as input the current

store, a module, and a list of imports, and returns the runtime state (i.e. the store,

frame, instructions tuple) as well as module exports. The predicate

instantiate s m v imps ((s’, f, init es), v exps)

asserts that the result of instantiating using the store s, the module m, and the imports

v imps is the runtime configuration triple (s’, f, init es) and the exports v exps.

Subsequently, the lines from 12 to 23 list the conditions for instantiate to hold.

First, the module needs to be validated. The module typing predicate (line 12) expresses

that the module m is well-typed, including the imports v imps and their types t imps.

The main part of loading the module follows in line 14, using the alloc module predicate,

which is explained in more detail later.

Lines 16 to 18 are responsible for evaluating the initializer expressions for globals, element

segments, and data segments. Subsequently, lines 19 to 20 verify that the resulting element

segments and data segments fit within their respective table or memory.

As a side note, a careful reader would notice that the definition as written in Listing

3.1 is circular – the initial values for globals g inits needed by module allocation are

obtained using the frame f, which in turn contains the instance returned from module

allocation. This is not a mistake in transcribing the definition into Isabelle; the official

specification actually is written this way. Functions in Isabelle can’t be readily defined in

a circular manner without a larger departure from the specification; hence instantiate

is implemented as a predicate, not a function. Nevertheless an executable version of

instantiation can be proven equivalent to the circular one, as was accomplished in prior

work on the verified interpreter.

Finally, lines 21 to 23 specify the list of instructions to be executed after instantiation;

those comprise the initialisation of tables and memories in accordance to element and

data segments, as well as the program entry point if specified by the module.

3.1.2 alloc module

Listing 3.2: Definition of module allocation

1 induc t i v e a l l o c modu le : : "s ⇒ m ⇒ v_ext list ⇒ v list ⇒ (s × inst ×
module_export list) ⇒ bool" where

2 "Jinst = Ltypes=(m_types m),
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3 funcs=(ext_funcs imps)@i_fs,

4 tabs=(ext_tabs imps)@i_ts,

5 mems=(ext_mems imps)@i_ms,

6 globs=(ext_globs imps)@i_gsM;
7 alloc_funcs s (m_funcs m) inst = (s1,i_fs);

8 alloc_tabs s1 (m_tabs m) = (s2,i_ts);

9 alloc_mems s2 (m_mems m) = (s3,i_ms);

10 alloc_globs s3 (m_globs m) gvs = (s',i_gs);
11 exps = map (λm_exp. LE_name=(E_name m_exp), E_desc=(export_get_v_ext

inst (E_desc m_exp))M) (m_exports m)

12 K =⇒ alloc_module s m imps gvs (s',inst,exps)"

Module allocation is the step in which the functions, tables, memories, and globals de-

fined in the module are included in the store, as defined in lines 7 to 10 in Listing 3.2.

An instance is returned which contains the addresses of functions, tables, memories, and

globals used by the module (lines 2 to 6). The globals are initialised with their initial val-

ues, hence the gvs argument. The returned instance contains not only addresses of newly

allocated items, but also the addresses of imports, as included by the imps argument.

3.2 Soundness

Soundness broadly refers to properties which well-typed programs are expected to hold.

Despite there being no explicit claims in the WebAssembly specification on statements

which should hold after instantiation, some desirable statements naturally arise given the

rest of the specification:

• First of all, recall the Preservation and Progress theorems for WebAssembly’s type

system. The assumption they share is that the expression being evaluated is well-

typed in regard to the store and frame. Therefore, the result of instantiation should

fulfill that assumption.

• Moreover, the resulting module exports should be well-typed so that they can be

imported by other modules.

• Lastly, typing judgments unrelated to the module being instantiated should be pre-

served. An easy way to achieve that is using the concept of store extension; broadly

speaking, a store extends another store if can be obtained by appending additional

data. WasmCert-Isabelle contains results on preservation of typing predicates under

store extension, thus it is sufficient to prove that the new store extends the old one.

As for assumptions, it should be sufficient for the above to hold that the store is well-

typed; the assumption should be preserved so that instantiation can be applied repeatedly.

The resulting theorem is presented in Listing 3.3. It is worth noting that line 5 is exactly

the assumption in Listing 2.3, connecting soundness of instantiation with soundness of

execution.
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Listing 3.3: Instantiation soundness theorem

1 theorem i n s t a n t i a t i o n s o u n d :

2 assumes "store_typing s"

3 "instantiate s m v_imps ((s',f, init_es), v_exps)"

4 shows "store_typing s'"
5 "` s'; f; init_es : []"

6 "∃tes. list_all2 (λv_exp te. external_typing s' (E_desc v_exp) te)

v_exps tes"

7 "store_extension s s'"

3.3 Proof

The proof of instantiation soundness is not conceptually difficult; the main idea is to

follow through each step of module instantiation and show that the typing invariants are

preserved. However, due to a large number of definitions to work with it spans around

one thousands lines of Isabelle proofs, which is too long to be presented fully.

The main technical challenge came from the allocations of functions, memories, tables,

and globals (Listing 3.2, lines 7 to 10). Their definitions in WasmCert-Isabelle (shown in

Listing 3.4 using memories as the example) follow the official specification, which defines

them in terms of iterating over the list and updating the store each time. This definition

however makes proving statements about the new store particularly unpleasant if used

directly, in particular because of the need to use explicit induction on the recursive1 defi-

nition every time. Induction is troublesome because Isabelle’s automated proof methods

can’t2 perform an inductive proof automatically; instead one needs to specify the induc-

tive hypothesis explicitly, a bothersome process if done repeatedly. How to avoid excessive

use of induction in this case then?

Listing 3.4: Allocation of memories as in the specification

1 fun a l l o c X s : : "(s ⇒ 'a ⇒ (s × i)) ⇒ s ⇒ 'a list ⇒ (s × i list)" where

2 "alloc_Xs f s [] = (s,[])"

3 | "alloc_Xs f s (m_X#m_Xs) = (let (s'', i_X) = f s m_X in

4 let (s',i_Xs) = alloc_Xs f s'' m_Xs in

5 (s',i_X#i_Xs))"
6

7 definition alloc mem : : "s ⇒ mem_t ⇒ (s × i)" where

8 "alloc_mem s m_m = (sLs.mems := (mems s)@[mem_mk m_m]M,length (mems s))"

9

10 abbreviation "alloc_mems ≡ alloc_Xs alloc_mem"

1Iteration becomes recursion when expressed in a functional language.
2This is not a weakness of Isabelle – induction is the hard part in automated reasoning.
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The resolution of the problem is to notice that the explicit recursive definition can be

shown to be equivalent to a definition expressed with the map3 function. The benefit of

doing so is that Isabelle’s tools are natively aware of various properties of list manipulation,

unlike user-defined ad-hoc recursion. Moreover, there is now only one store update at the

top of the definition rather than deep inside auxiliary definitions, further simplifying

reasoning.

In other words, this idea splits the proof of soundness of instantiation into two stages:

• Show that the recursive definition and the simplified definition are equivalent.

• Complete the rest of the proof using the simplified definition.

This way we get the best of both worlds: the base definitions can be easily checked man-

ually to reflect the official specification, while the actual proof can avoid the troublesome

parts of the original definitions by utilising more convenient but equivalent definitions.

Listing 3.5 shows the simplified definition, as well as the lemma showing that the original

definition can be expressed in terms of the simplified one. As an example of usage, line 9

shows the lemma that the memories newly allocated in alloc module can be expressed

with the simplified definition.

Listing 3.5: Simplified allocation of memories

1 definition a l loc mem simple : : "mem_t ⇒ mem" where

2 "alloc_mem_simple m_m = mem_mk m_m"

3

4 abbreviation "alloc_mems_simple m_ms ≡ map alloc_mem_simple m_ms"

5

6 lemma a l l o c mems equ iv : "fst (alloc_mems s m_ms) = sLmems := mems s @

alloc_mems_simple m_msM"
7 [ . . . ]

8

9 lemma al loc module mems form:

10 assumes "alloc_module s m v_imps g_inits (s', inst, v_exps)"

11 "mems s' = mems s @ ms"

12 shows "ms = alloc_mems_simple (m_mems m)"

The simplified definitions later came in use during the work on the verified interpreter as

well, showing their utility over the original definitions.

In summary, proving soundness of instantiation was mostly an exercise in using Isabelle,

taking a decent amount of work but requiring no substantial new ideas. Fortunately,

the proof found no issues with the formal definition of instantiation. Nevertheless, the

existence of the proof increases our confidence in WebAssembly’s safety, extending the

area covered by formal verification.

3map f [x1, x2, ...] is the list [f x1, f x2, ...].
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Chapter 4

Interpreter

Aside from verifying the soundness of specification, another area where formal verification

enhances the safety of the language is having a verified interpreter. Even if not used to run

programs in practice, a verified interpreter serves as a reference for other engines about

the behaviour prescribed by the specification on a given input. Therefore, in theory, such

an interpreter can be used to increase the confidence in engines more focused on other

factors by running both on randomly generated input and checking if the output is the

same for both.

WasmCert-Isabelle already includes a verified interpreter of WebAssembly [1]. However,

its performance suffers outside of small test instances, meaning its utility for testing

purposes described earlier is very limited. One particular issue is modelling memory as

an immutable list, causing O(n) access time instead of O(1) and thus increasing the time

complexity. Because of that and other factors, prior to this project another interpreter

had been written as a side project on WasmCert-Isabelle, with lists replaced by arrays

where relevant, as well as other changes. The interpreter, while yet unverified, was fast

enough that it could hypothetically be used in practice as a test oracle.

In this work I complete a formal proof of soundness for the faster interpreter. Soundness in

the context of an interpreter is the property that, if the interpreter terminates successfully,

its result is consistent with the specification. It is a weaker property than total correctness,

which in addition implies that the interpreter always terminates successfully. The proof of

soundness is accomplished by refinement from the slower interpreter, i.e. by incrementally

showing that each function in the new interpreter behaves in a way corresponding to

the respective function in the old, verified interpreter. The challenge of using mutable

arrays was solved by modelling them with the state monad for imperative data structures;

reasoning about the program’s properties was made possible by employing separation

logic, avoiding the frame problem.

The interpreter is thus proven to be sound, and moreover had earlier been checked to

pass the WebAssembly test suite. Those properties led to its adoption in practice by the
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Bytecode Alliance for their WebAssembly testing infrastructure.

4.1 Imperative HOL

Isabelle/HOL, aside from being a formal proof system, contains a small, ML-like functional

language as a subset. Additionally, Isabelle contains support for exporting functions

written in Isabelle/HOL to OCaml1, known as code extraction. Therefore, one can have a

program written within Isabelle/HOL, with immediate support for proving its properties.

However, since logical statements have to be independent from program state, all func-

tions in Isabelle/HOL are pure by necessity. In other words, the functional language in

Isabelle/HOL does not contain mutable data structures such as arrays directly, unlike

SML and OCaml. The solution to that is the use of the Imperative HOL library, which

defines mutable data structures in terms of a monad, similarly to Haskell.

The core challenge comes from the need to handle the program’s mutable state, also

known as the heap2. Imperative HOL’s approach comes from the observation that an

imperative program is essentially a partial3 function which, given the initial heap, returns

the program’s result as well as the updated heap. This leads to the ’a Heap datatype,

which is used to represent an imperative expression evaluating to type ’a:

1 datatype 'a Heap = Heap "heap ⇒ ('a × heap) option"

2

3 primrec execute : : "'a Heap ⇒ heap ⇒ ('a × heap) option" where

4 [ code de l ] : "execute (Heap f) h = f h"

A special case of a Heap expression is a pure expression, i.e. one that does not modify the

heap and can be expressed in plain Isabelle/HOL. Therefore in Imperative HOL it becomes

a function which returns the unmodified heap, giving rise to the return combinator which

converts a pure expression to an imperative one:

1 definition re turn : : "'a ⇒ 'a Heap" where

2 [ code de l ] : "return x = Heap (λh. Some (x, h))"4

Furthermore, one might wish to execute two Heap expressions one after each other, chain-

ing them together. The second expression should also contain a way to capture the result

of the first expression; a way to do that is to accept it as an argument to a function. This

idea results in the bind combinator:

1 definition bind : : "'a Heap ⇒ ('a ⇒ 'b Heap) ⇒ 'b Heap" where

1OCaml is not the only supported language, but it is the language the interpreter is extracted to.
2A similar but slightly different concept to heap memory as contrasted with stack memory.
3The expression might crash or loop indefinitely; hence the function is partial, not total.
4The actual definition in Heap Monad.thy is different; I present an equivalent, more readable definition
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2 [ code de l ] : "bind f g = Heap (λh. case execute f h of

3 Some (x, h') ⇒ execute (g x) h'
4 | None ⇒ None)"

Formally speaking, the return and bind combinators together form a monad. In order

to make writing programs easier,

do { x ← a; e }

is syntax sugar for bind a (λx.e) and intuitively means “execute a, saving the result in

x, and execute e”; it can be compared to writing x = a; e; in C.

In a similar manner, array operations can be defined to return a Heap value by modelling

them as functions modifying the array in the heap.

By wrapping mutable state in the Heap monad, reasoning about expressions with mutable

state is made possible by making the program state explicit.

An additional utility of Imperative HOL appears when extracting code containing Heap

expressions. Instead of passing the heap around explicitly, the heap as formally modelled

in the definition of the Heap monad becomes the implicit heap in the target language.

Thus an Isabelle/HOL expression such as Array.upd i x a, despite being specified as

a wrapped function taking a heap, becomes a.(i) <- x in OCaml, which modifies the

heap in-place. This allows one to write a program in Isabelle/HOL which is nevertheless

efficient when extracted to another language such as OCaml.

4.2 Separation logic

Separation logic is an extension of Hoare logic designed to reason about shared mutable

data structures [9]. Hoare logic is a framework of specifying and proving programs’

properties with the partial correctness triple (also called a Hoare triple) as its central

concept. A partial correctness triple for a program C is written as

{P} C {Q}

for a precondition P and and a postcondition Q. That Hoare triple then informally means

“if P holds initially, and C successfully terminates, then Q holds as a result of running

C”. It is called a partial triple because it does not show that C successfully terminates

(in contrast to a total correctness triple which does require that from C). Hoare logic can

support pointers by introducing a x ↪→ y predicate, meaning “at address x there is a value

y”.

However, plain Hoare logic is poorly equipped to deal with a large number of pointers to
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distinct mutable data structures. As an example, consider two pointers a and b to two

locations both containing 0, and a program writing 1 to the address b is pointing to. A

naive attempt at a Hoare triple would write

{a ↪→ 0 ∧ b ↪→ 0} b := 1 {a ↪→ 0 ∧ b ↪→ 1},

which turns out incorrect. The precondition does not exclude the possibility that a and

b both point to the same location, in which case writing to b would also modify the value

referenced by a. A correct triple then is

{a ↪→ 0 ∧ b ↪→ 0 ∧ a 6= b} b := 1 {a ↪→ 0 ∧ b ↪→ 1 ∧ a 6= b}.

One can notice that as the number of pointers in the program grows, then so does the

number of pairs of pointers we need to assert are not equal, quickly becoming unman-

ageable. Moreover, Hoare triples even for a small function need to be aware of all other

pointers in the program to show that running the function does not change anything in a

different part of the program, significantly violating modularity. Thus plain Hoare logic

does not scale up at all to deal with imperative programs with pointers to mutable data

structures.

Separation logic is designed to overcome that issue. It specifies a language of assertions,

which act as descriptions of the heap. Separation logic assertions extend the base logic

used in Hoare triples by additional predicate symbols:

• emp, which reads as “the heap is empty”.

• x 7→ y, which strengthens x ↪→ y by “the heap consists of a pointer x pointing to y

and nothing else” .

The key innovation however is the introduction of separating conjunction, denoted by ∗.
Given two assertions P and Q, the assertion

P ∗Q

describes the heap h if and only if it can be partitioned into two disjoint heaps h1 and h2

such that P describes h1 and Q describes h2.

To see how separating conjunction increases the expressive power, consider the earlier

example of two pointers a and b. If instead of a ↪→ 0 ∧ b ↪→ 0 we write

a 7→ 0 ∗ b 7→ 0,

we get a 6= b for free, as by definition of separating conjunction they belong to distinct

parts of the heap.
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To complete the description of separation logic, we need to modify the semantics of partial

correctness triples as well. Now,

{P} C {Q}

takes a more complex description of:

if the initial heap h can be partitioned into two distinct heaps hP and hO,

and P describes hP ,

and C terminates,

then the resulting h′ after the execution of C can be partitioned into two distinct heaps

hQ and hO such that hO is the same as earlier and Q describes hQ.

As an example, writing to a pointer can now be specified with a Hoare triple in separation

logic as

{p 7→ x} p := y {p 7→ y}

which now not only says that the assignment modifies the value stored in p, but also that

the assignment doesn’t change anything else in the heap.

A consequence of the new semantics is the very powerful frame rule:

{P} C {Q}
{P ∗ F} C {Q ∗ F}

In other words, Hoare triples in separation logic can be extended with parts of the heap

not affected by the expression. This provides the much-needed modularity, as the Hoare

triple for each function and subexpression only needs to worry about the parts of the heap

it touches and is unaffected by changes in other parts of the program.

The above informal description of separation logic is not exhaustive. The description of

the −∗ (separating implication, or “wand”) operator is omitted, since it doesn’t appear in

the formal proofs this work reports on, and moreover various technical details have been

glossed over in favour of a brief description.

4.3 Separation logic in HOL

We used Peter Lammich’s library for separation logic for imperative structures in HOL

[10]. The key concept in that library are assertions, represented by the type assn. An

assertion is modelled as a predicate on partial heaps, subject to the restriction that it

does not depend on the rest of the heap.

A common concept in formulations of separation logic for imperative languages is sep-

arating the program variables from assertion variables. Such separation is necessary in

languages with mutable variables, as the value of a variable appearing in the program
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is dependent on a given point in time. That distinction is however not necessary in Is-

abelle/HOL, as all variables are immutable, and hence the library makes no effort to

distinguish between variables which appear in the program and those which do not.

The definition of separating conjunction follows as described earlier. There is however

an interesting detail in how Hoare triples are implemented; in order to capture the result

of executing the expression, the postcondition is a function which takes the result as the

argument. In other words

<P> C <Q>

means “if P holds on a part of the heap before, and C terminates successfully with the

result r, then executing C results in Q r describing the respective part of the heap while

leaving the rest unchanged”.

As an example, the Hoare triple for writing to a pointer looks as follows:

1 lemma u p d a t e r u l e :

2 "<p 7→r y> p := x <λr. p 7→r x>"

Since p := x doesn’t return a meaningful value, the returned value is ignored in the

postcondition. It can however be used in the postcondition when the type of the expression

is non-trivial, as seen in the example of reading from a pointer:

1 lemma l o o k u p r u l e :

2 "<p 7→r x> !p <λr. p 7→r x * ↑(r = x)>"

where the ↑ (P ) is the notation for the “P holds and the heap is empty” assertion, where

P is a Boolean predicate.5

Lammich’s main separation logic library works with total correctness triples. However,

since partial correctness is sufficient for the purposes of this project, we use a modified

version of the library with partial correctness triples instead. In particular, the expression

is allowed to crash for the triple to still hold – the postcondition has to hold only if the

expression terminates successfully without crashing. Because of that, some triples might

look somewhat counterintuitive, as shown in Listing 4.1 on the example of array lookup.

Listing 4.1: The Hoare triple for array lookup

1 lemma n t h r u l e :

2 "<a 7→a xs>

3 Array.nth a i

4 <λr. a 7→a xs * ↑(r = xs ! i ∧ i<length xs)>"

One would naively expect that the i<length xs condition should appear in the precon-

5One might wonder if something like p 7→r x ∧ r = x wouldn’t be simpler. However, the use of
separating conjunction over Boolean conjunction allows the automated proof methods to do their work
efficiently, as shown later.
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dition, so that array lookup can take place safely. However, the program crashes if the

index is outside of bounds, and crashes are not covered by the partial correctness triple;

therefore i<length xs in the precondition is unnecessary. To the contrary, i<length xs

appears in the postcondition – we know that the index must have been within bounds if

the array lookup terminated successfully.

A key feature of the library is the sep auto proof method. Given a Hoare triple to prove,

sep auto applies routine transformations working through the expression forwards, up-

dating the precondition accordingly. Ideally, the entire expression is processed, simplifying

the original Hoare triple to statements not involving separation logic, which can be proved

afterwards with base Isabelle methods. This process is in general known as verification

condition generation, and is essential for effective use of separation logic.

It is worth noting that sep auto isn’t magic; verification condition generation relies on

being able to decide the underlying logic, which in most cases is simple enough but

may not be trivial to automate. Because of that sep auto, rather than generating the

most general conditions possible, proceeds with a number of common-sense heuristics

in order to be practical. In particular, it is essential for sep auto to work well that

preconditions and postconditions are expressed as a string of assertions joined together

with separating conjunction. It might happen that sep auto heuristics pick the wrong

choice in verification condition generation; in that case tweaking6 it manually is necessary.

Finally, sep auto does not work perfectly with higher-order functions, requiring more

manual input.

4.4 Refinement proof

WasmCert-Isabelle already contains an interpreter proven to be sound [1]. Listing 4.2

contains its soundness theorems, expressed in words as “if the interpreter returns a list

of values, that list of values is consistent with the specification” and “if the interpreter

traps, trapping is consistent with the specification”.

Listing 4.2: Soundness of the pure interpreter

1 theorem run v sound:

2 assumes "run_v fuel d (s, f, b_es) = (s', RValue vs)"

3 shows "(∃f'. reduce_trans (s,f,$*b_es) (s',f',v_stack_to_es vs))"

4

5 theorem run v sound t rap :

6 assumes "run_v fuel d (s, f, b_es) = (s', RTrap str)"

7 shows "(∃f'. reduce_trans (s,f,$*b_es) (s',f',[Trap]))"

6Example includes choosing the order of case splits and applications of sep auto carefully.
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That interpreter contains no mutable state, hence it’s called the pure interpreter from now

on. However, to simplify the proof of soundness, it models WebAssembly’s containers

(memories etc.) as lists, adding a polynomial factor to the time complexity and thus

leading to unacceptably large execution overhead.

The new interpreter instead models the containers as arrays for constant-time lookup and

update, using monadic state to do so, hence called the monadic interpreter from now

on. Since the pure and monadic interpreter share the same structure, differing mostly

only in the data structures used, the simplest way to prove the soundness of the monadic

interpreter is to show that the pure and the monadic interpreter are, in a sense, equivalent

– a technique known as refinement.

A simple example of the idea behind the refinement proof is included in Listing 4.3, which

shows a Hoare triple indicating that get local, the function responsible for fetching

the value of a local variable onto the stack, and its monadic version get local m, are

equivalent up to partial correctness.

Listing 4.3: Refinement of get local

1 definition g e t l o c a l : : "nat ⇒ f ⇒ v_stack ⇒ (v_stack × res_step)" where

2 "get_local k f v_s =

3 (if k < length (f_locs f)

4 then (((f_locs f)!k)#v_s, Step_normal)

5 else (v_s, crash_invalid)))"

6

7 [ . . . ]

8

9 definition g e t l o c a l m : : "nat ⇒ v array ⇒ v_stack ⇒ (v_stack ×
res_step) Heap" where

10 "get_local_m k loc_arr v_s =

11 do {

12 v ← Array.nth loc_arr k;

13 return (v#v_s, Step_normal) }"

14

15 [ . . . ]

16

17 definition l o c s m as sn : : "v list ⇒ v array ⇒ assn" where

18 "locs_m_assn locs locs_m = locs_m 7→a locs"

19

20 lemma g e t l o c a l t r i p l e :

21 "<locs_m_assn (f_locs f) f_locs1>

22 get_local_m k f_locs1 v_s

23 <λr. ↑(r = get_local k f v_s) * locs_m_assn (f_locs f) f_locs1>"

24 un fo ld ing l o c s m a s s n d e f g e t l o c a l m d e f g e t l o c a l d e f

25 by sep auto

One can easily notice that the get local and get local m functions essentially do the
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same thing; the main difference is that one fetches the value from a list, and the other

from an array. The other difference is that the pure version crashes explicitly7 with the

use of a crash invalid value if the index is out of bounds, while the monadic version

crashes implicitly. However, because we are interested in partial correctness only, that

difference is irrelevant. It is worth noting that partial correctness is sufficient for proving

soundness.

To relate those functions together more precisely, we need to express something like “run-

ning get local m returns the same result as running get local on the same arguments.

Moreover, the monadic version, just as the pure version, doesn’t modify anything”.

How is that claim expressed? One way is to do it as follows:

• In the precondition, relate together the data structure in the monadic interpreter

with one in the pure interpreter (line 21).

• In the postcondition, write that the result returned by the monadic expression is

the same as the one which would have been returned by the pure one, using the

pure data structure from the precondition (line 23). Moreover, copy and paste the

precondition to express that nothing is modified.

This pattern, shown by the get local m example, repeats in every step of the refinement

proof, even though it becomes more complex in other parts of the proof.

In this case, the Hoare triple is very simple to prove – it is sufficient to unfold the

definitions and run sep auto, an invaluable tool for the refinement proof. The sep auto

proof method allows to skip over parts which are identical or very similar, leaving only

the more tricky parts to the human writing the proof. In fact, the refinement proof for 24

out of 39 WebAssembly’s basic instructions has been handled entirely by specifying the

definitions to unfold and running sep auto.

4.4.1 Assertions on lists

Unfortunately, some refinement steps need a bit more work than the above. Listing 4.4

shows the case of mem size m, the function responsible for executing the instruction for

returning the current size of a memory. It first obtains the index of the memory to answer

the query about, and then looks up the memory of that index in the array of memories.

Listing 4.4: Refinement of mem size

1 definition mem size m : : "mem_m array ⇒ inst_m ⇒ v_stack ⇒ (v_stack ×
res_step) Heap" where

2 "mem_size_m ms i_m v_s =

3 do {

7The result of an out-of-bounds access to a list with ! in Isabelle is an undetermined value, which
may cause problems without an explicit bounds check.
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4 j ← Array.nth (inst_m.mems i_m) 0;

5 m ← Array.nth ms j;

6 m_len ← len_byte_array (fst m);

7 return (((V_num (ConstInt32 (int_of_nat (m_len div Ki64))))#v_s),

Step_normal)

8 }"

9

10 definition mems m assn : : "mem list ⇒ mem_m array ⇒ assn" where

11 "mems_m_assn ms ms_m = (∃A ms_i. ms_m 7→a ms_i * list_assn mem_m_assn ms

ms_i)"

12

13 lemma m e m s i z e t r i p l e :

14 "< mems_m_assn ms ms_m * inst_m_assn (f_inst f) inst_m >

15 mem_size_m ms_m inst_m v_s

16 <λr. ↑(r = mem_size ms f v_s) *

17 mems_m_assn ms ms_m * inst_m_assn (f_inst f) inst_m >"

18 un fo ld ing mem size m def i n s t m a s s n d e f mems m assn def

l i s t a s s n c o n v i d x

19 apply ( sep auto s p l i t : p r o d . s p l i t s )

20 apply ( e x t r a c t r e i n s e r t l i s t i d x "inst.mems (f_inst f) ! 0" )

21 apply ( sep auto )

22 apply ( simp add: a p p s f v s m e m s i z e d e f smem ind def mem size def

23 mem length def mem rep length def s p l i t : opt ion . s p l i t l i s t . s p l i t )

24 done

The difficulty is that now we have two layers of relating pure and monadic data structures.

We first need to define the correspondence between a pure and monadic memory, and then

relate a list of pure memories with the array of monadic memories, with the second step

shown in mems m assn; the list assn P xs ys assertion says “join the assertions P x y

with * for each respective pair of x and y from xs ys”.

Listing 4.5: Definition of list assn, courtesy of Peter Lammich

1 fun l i s t a s s n : : "('a ⇒ 'c ⇒ assn) ⇒ 'a list ⇒ 'c list ⇒ assn" where

2 "list_assn P [] [] = emp"

3 | "list_assn P (a#as) (c#cs) = P a c * list_assn P as cs"

4 | "list_assn _ _ _ = false"

However, the trouble with list assn is that sep auto generally doesn’t know how to

process it automatically. Thus, when an assertion from inside of list assn is needed

to progress, it needs to be extracted from list assn manually, and most of the time

reinserted back afterwards. It is a common enough process that we defined a custom

proof method for it called extract reinsert list idx. Thus the proof in lines 19 to

24 consists of the initial application of sep auto, extracting and reinserting the relevant

assertion in the place where sep auto can’t progress, and finishing off the rest.

The proof in Listing 4.4 is also a simple example of the main workflow used to carry out
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the refinement proof.

• Apply sep auto.

• Figure out where it got stuck, and what it needs to proceed. Sometimes an extra

fact is needed, and sometimes dissecting list assn is necessary. Tweak and repeat.

• When you reach a goal that doesn’t involve separation logic, apply base Isabelle

proof methods to finish (similarly as in line 22 with simp).

Unfortunately, as much as clean short proofs are preferable, some of the refinement steps

were notably more complex than the above, with multiple steps of extraction from and

reinsertion to list assn. One might ask whether at the point of 10 to 20 apply statements

wouldn’t it have been better to write an Isar proof for more structure instead, however

in case of reasoning about chunks of code any intermediate lemmas tend to be too large

to write down manually. The capacity of automated methods to process the intermediate

steps implicitly is invaluable, despite occasional troubles.

4.4.2 Shared references

The next challenge comes when defining the assertions relating the pure and monadic

data structures. While for the most part those assertions are easily defined, a tricky part

appears. Both frames and function closures contain a reference to the current instance,

thus a naive assertion relating the pure and monadic frame or closure would include

inst m assn as well. However, two different closures or frames might point to the same

instance, which means they couldn’t be joined with separated conjunction in the naive

approach, as they both “claim” the instance.

An elegant solution to this problem would have been to utilise either fractional or count-

ing permissions in separation logic [11], since they are specifically suited for the case of

multiple references with the “right” to access but not modify. However, the separation

logic library used here does not support that, and switching it to one that does would

have involved considerable effort. Instead, after some thought, the option I chose works

as follows:

• Define inst assocs to be the pair of lists8 of monadic instances in use and their

pure counterparts.

• Assert that the pure and monadic instances are equivalent to each other in the

inst assocs.

• Pass the inst assocs as an argument to assertions on data structures contain-

ing references to instances, which in turn assert that the instance they refer to is

8A list of pairs would make more sense in an explanation, but in this proof a pair of lists turned out
to be easier to manage.
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contained within the inst assocs.

Listing 4.6: Definition of inst assocs

1 type synonym i n s t a s s o c s = "(inst list × inst_m list)"

2

3 definition i n s t a s s o c s a s s n : : "inst_assocs ⇒ assn" where

4 "inst_assocs_assn ≡ λ(insts, inst_ms). list_assn inst_m_assn insts

inst_ms"

5

6 definition i n s t a t : : "inst_assocs ⇒ (inst × inst_m) ⇒ nat ⇒ bool" where

7 "inst_at ≡ λ(insts, inst_ms) (inst, inst_m) j. j < min (length insts)

(length inst_ms)

8 ∧ insts!j = inst ∧ inst_ms!j = inst_m"

Listing 4.6 shows the implementation of this idea. Written this way, the assertions for data

structures can be freely joined with separating conjunction. When reasoning about the

referred instance, all that needs to be done is extracting the assertion about the instance

from the inst assocs assn, and reinserting it back to the lists of instances when finished.

An example is shown in Listing 4.7, where we need to assert the equivalence of pure

and monadic instances both in the current frame (f inst f, f inst2) and in function

closures (funcs m assn). Since those instances might overlap, the equivalence needs to be

expressed as inst assocs assn separately. Then the inst assocs can be passed through

to funcs m assn, asserting the equivalence of pure and monadic closures. Moreover,

f inst f and f inst2 can be related together simply by adding the assumption that

they can be found in the inst assocs at some index, using the inst at predicate.

Listing 4.7: Refinement of call indirect

1 lemma c a l l i n d i r e c t t r i p l e :

2 assumes "inst_at i_s (f_inst f, f_inst2) j"

3 shows

4 "<tabs_m_assn ts ts_m * funcs_m_assn i_s fs fs_m * inst_assocs_assn i_s>

5 call_indirect_m k ts_m fs_m f_inst2 v_s

6 <λr. ↑(r = call_indirect k ts fs f v_s)

7 * tabs_m_assn ts ts_m * funcs_m_assn i_s fs fs_m * inst_assocs_assn i_s>"

Since the proof of the proposition is relatively complex due to the large number of defini-

tions involved, it is not shown in Listing 4.7. Despite that, it follows the structure shown

earlier of repeatedly applying sep auto, tweaking it manually to process the entire Hoare

triple, and finishing off with Isabelle’s proof methods.
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4.4.3 Memory structure (and a bug)

The key difference between the monadic and pure interpreter is the use of arrays in place of

lists. However, the monadic interpreter went one step further for improved performance,

defining memories in terms of a custom array, exported as specialised OCaml primitives.

This meant that the largest divergence between the two interpreters occured in handling

of the load and store instructions, and subsequently the relevant proof of equivalence is

possibly the largest part of the refinement proof.

This is also where the proof uncovered a bug in the monadic interpreter, shown in Listing

4.8, with line 6 and 8 showing the original and fixed version respectively. store packed is

a function that implements writing a number of bits to memory other than 32 or 64 bits;

since WebAssembly supports only 32 and 64 bit numeric values directly, store packed

takes a value and writes only a part of its bits to memory. Since a failed write due to

index out of bounds should trap, store packed checks first whether the location to be

written to is contained within bounds. Here comes the bug: the pure interpreter, as well

as the specific, trap only if the bits which are actually being written to memory extend

past its end, while the monadic interpreter in its original version traps if writing the entire

numeric value to memory would extend past its end, even if the bits actually being written

would not.

Listing 4.8: A bug in the monadic interpreter.

1 definition s tore packed m v : : "mem_m ⇒ nat ⇒ off ⇒ v_num ⇒ tp_num ⇒
(unit option) Heap" where

2 "store_packed_m_v m n off v tp =

3 do {

4 m_len ← len_byte_array (fst m);

5 (* original *)

6 (if (m_len ≥ (n+off+(t_length (typeof v)))) then do [...]

7 (* fixed *)

8 (if (m_len ≥ (n+off+(tp_num_length tp))) then do [...]

9 else return None)

10 }"

It is a bug which arises in a very specific edge case and thus not readily caught. It

is unknown whether it would have been caught by testing, and we haven’t investigated

whether the bug would have had actual serious consequences. However, it is a clear

example of formal verification ensuring correctness in action.

4.4.4 Interpreter top-level

After completing the Hoare triples for each basic instruction, the pure and monadic in-

terpreters can be finally related together at a higher level, as shown in Listing 4.9. Both
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interpreters work by keeping a representation of the program state (config in pure in-

terpreter, config m in monadic), and executing the instructions one by one. Thus we

first show the Hoare triple that execution of a single instruction is equivalent in both

interpreters, using cfg m assn (listed in full in Listing A.1 in the appendix) to relate

them.

The proof in Listing 4.9 follows a case split on the instruction, dealing with each case

individually. Line 16 illustrates as an example that the Get local case is solved by

calling sep auto, passing get local triple (Listing 4.3) to its knowledge base.

Listing 4.9: Refinement of run step b e

1 abbreviation c f g m p a i r a s s n where

2 "cfg_m_pair_assn i_s ≡
3 λ(cfg, res) (cfg_m, res_m). cfg_m_assn i_s cfg cfg_m * ↑(res = res_m)"

4

5 lemma r u n s t e p b e m t r i p l e :

6 "<cfg_m_assn i_s cfg cfg_m>

7 run_step_b_e_m b_e cfg_m

8 <λr. cfg_m_pair_assn i_s (run_step_b_e b_e cfg) r>t"

9 proof −
10 [ . . . ]

11 show ? t h e s i s

12 proof ( ca s e s b e )

13 [ . . . ]

14 case ( G e t l o c a l k )

15 then show ? t h e s i s un fo ld ing u n f o l d v a r s a s s n s

16 by ( sep auto h e a p : g e t l o c a l t r i p l e )

17 [ . . . ]

Subsequently, the run iter m is the function which specifies the execution loop; run iter m

n cfg means “execute n steps9 starting from the state cfg”. It is defined recursively, de-

creasing the number of steps passed as the argument in each step. Therefore, this time

the Hoare triple for run iter m is proved by induction on the number of steps, as shown

in Listing 4.10. To prove the inductive step, the inductive assumption (denoted as Suc)

is provided to sep auto in order to be able to process the recursive call.

Listing 4.10: Refinement of run iter, proved inductively

1 lemma r u n i t e r m t r i p l e :

2 "<cfg_m_assn i_s cfg cfg_m>

3 run_iter_m n cfg_m

4 <λr. cfg_m_pair_assn i_s (run_iter n cfg) r>t"

5 proof ( induct n a r b i t r a r y : i s c f g cfg m )

6 case 0

7 show ?case un fo ld ing 0 by sep auto

9In Isabelle all functions must be total, i.e. always terminate. The easiest way to express a loop in
presence of that requirement is to add an argument representing the number of steps to execute.
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8 next

9 case ( Suc n)

10 [ . . . ]

11 show ?case

12 [ . . . ]

13 apply ( sep auto heap:Suc )

14 [ . . . ]

15 done

16 qed

Finally, the refinement proof reaches the top level of the interpreter in run v m, one of

the functions extracted to OCaml. Instead of starting from the internal representation as

defined by config, run v m starts from the runtime configuration (i.e. the store, frame,

list of instructions triple) as defined in WebAssembly semantics.

Listing 4.11: Refinement of run v

1 lemma r u n v m t r i p l e :

2 assumes "inst_at i_s (f_inst f, f_inst2) j"

3 shows "< s_m_assn i_s s s_m * inst_assocs_assn i_s * locs_m_assn (f_locs

f) f_locs1 >

4 run_v_m n d (s_m, f_locs1, f_inst2, b_es)

5 <λ(s_m', res_m). let (s', res) = run_v n d (s, f, b_es) in

6 ↑(res_m = res) * s_m_assn i_s s' s_m' * inst_assocs_assn i_s >t"

4.4.5 Instantiation in the interpreter

While that shows that the pure and the monadic interpreter return the same answer

given some initial preconditions, one might question whether that precondition is actually

attained when executing WebAssembly code. For that reason, we need to show that the

interpreters agree also in the instantiation stage.

Listing 4.12: Refinement of interp instantiate

1 lemma i n t e r p i n s t a n t i a t e m t r i p l e :

2 "< s_m_assn i_s s s_m * inst_assocs_assn i_s >

3 interp_instantiate_m s_m m v_imps

4 <λ(s_m', res_m). let (s', res) = interp_instantiate s m v_imps in

5 ∃Ai_s'. ↑(res_inst_m_agree i_s' res res_m) * s_m_assn i_s' s' s_m' *

inst_assocs_assn i_s' >t"

Listing 4.12 shows the Hoare triple stating that instantiation in the monadic interpreter

returns the same result as instantiation in the pure interpreter, and that the invariant in

the precondition is preserved.

One additional trouble in proving the instantiation part compared to the rest of the in-
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terpreter came from the more frequent need to use iteration. In order to avoid explicit

recursion we used higher-order functions such as list all2 m; list all2 m f m xs ys

evaluates to True iff f m x y returns True for each respective pair of x and y from xs

ys, where the difference from list all2 is the support for mutable state in the form of

’a Heap. Subsequently, by expressing list all2 m as a Hoare triple10 (Listing A.2 in

the appendix), the need to work with explicit recursion every time was avoided. How-

ever, sep auto was found to not deal with higher-order functions perfectly, unfortunately

requiring more manual input for the proof to proceed. Despite that, the full proof was

achieved.

Moreover, the invariant holds initially when the store is empty, as shown in Listing 4.13,

thus concluding that (repeated) instantiation works exactly as expected.

Listing 4.13: Hoare triple for empty store

1 lemma make empty s to r e m tr ip l e :

2 "<emp>

3 make_empty_store_m

4 <λr. s_m_assn ([], []) Ls.funcs = [], tabs = [], mems = [], globs = [] M
r * inst_assocs_assn ([], [])>"

In conclusion, whenever the monadic interpreter terminates successfully, the result is

equivalent to the result from the pure interpreter. Together with the soundness of the pure

interpreter (“whenever the pure interpreter terminates successfully, the result is consistent

with the specification”), that concludes the soundness of the monadic interpreter.

4.5 Putting it all together

So far the theorems presented illustrate the equivalence up to partial correctness between

the pure and the monadic interpreter. Those Hoare triples might be considered the top-

level theorems; the functions for initialisation, instantiation, and execution are exported

separately to be called by the host environment, as prescribed by WebAssembly.

One possible objection is that soundness is vacuously true if the interpreter always crashes.

However, the monadic interpreter passes the WebAssembly test suite, with no known

practical inputs where it crashes when it should not. Therefore the interpreter’s soundness

is a meaningful property.

The other, more serious objection is that the relation between the pure and the monadic

interpreter only holds if the precondition is satisfied. In an extreme example, if the

10A most general Hoare triple for list all2 m would be too unwieldy due to the need to represent
induction; however, the assumption that the function does not modify state eliminates induction while
being sufficient for our purposes.
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precondition can never be satisfied, the equivalence becomes vacuous. That objection

takes more effort to refute.

This section presents how the interpreter is used in practice, and shows said end-to-end

usage to be sound, dispelling doubts about the preconditions.

4.5.1 Fuzzing

As mentioned in the introduction, the monadic interpreter found its practical use. Natu-

rally, multiple considerably faster WebAssembly engines exist; moreover, the pure inter-

preter could be said to be verified to a strictly greater extent11 than the monadic one.

However, the monadic interpreter uniquely combines acceptable performance and formally

proven soundness to occupy a yet-unfilled niche. Those two characteristics piqued the in-

terest of the people involved in the Bytecode Alliance when presented with the interpreter,

given their utility for a particular automated testing method.

In fuzzing, the inputs for the program being tested are being generated randomly, in

particular to cover cases which might have been overlooked in manually written tests. The

verified interpreter here comes in use for the variant where the output of the application

being tested on random input is compared with another one meant to return the same

results; in this case a performance-focused WebAssembly engine needs to be checked

whether its output follows the specification. However, before the monadic interpreter

there was no sure practical way to check whether it’s the case – both the verified pure

interpreter and the official (but unverified) reference interpreter are too slow to use on

larger input. The verified monadic interpreter finally fits that purpose, and hence was

adopted for use in Bytecode Alliance’s WebAssembly testing infrastructure.

The interpreter by itself can’t be used as a test oracle “out of the box”. Instead, we present

the function which is used in the testing infrastructure to obtain meaningful output from

the interpreter. The version presented here contains light edits made with the purpose of

making the specification more readable.

4.5.2 Specification

Let’s specify what we want to run for a self-contained result. One way is to instantiate a

given module from scratch, and execute a function exported by said module. This leads

to the specification as written in Listing 4.14, which, in words, says

• Instantiate a module m with imports v imps and run its initializer expressions.

• Have the i-th export be a function of type t1 > t2.

11Firstly, the pure interpreter is proven to not crash whenever the monadic interpreter does not crash;
secondly, the pure interpreter does not utilise custom-written translations to OCaml.

42



• Interpret raw args bytes as typed arguments for the function.

• Run the function and return the result vs.

Listing 4.14: Specification of run fuzz

1 induc t i v e r u n f u z z s p e c : : "m ⇒ v_ext list ⇒ nat ⇒ bytes list ⇒ e list ⇒
bool" where

2 "Jinstantiate' Ls.funcs = [], tabs = [], mems = [], globs = [] M m v_imps

((s1, f1, es), v_exps);

3 reduce_trans (s1, f1, es) (s2, f2, []);

4 E_desc (v_exps!i) = (Ext_func j);

5 external_typing s2 (Ext_func j) (Te_func (t1 _> t2));

6 length args_bytes ≥ length t1 ∧ map2 wasm_deserialise args_bytes t1 =

args;

7 reduce_trans (s2, empty_frame , ($C* args) @ [Invoke j]) (s3, f3, vs)

8 K =⇒ run_fuzz_spec m v_imps i args_bytes vs"

4.5.3 Implementation and soundness

Given the specification, we can now write run fuzz m which fulfills it; the full implemen-

tation is found in Listing A.3 in the appendix. Similarly as in the rest of the repository,

the proof is now split into two parts: showing that the monadic and pure versions are

equivalent, and that the pure version fulfills the specification, as shown in Listing 4.15.

In the end those two parts can be combined and the Hoare triple unpacked to say: if

run fuzz m returns a list of values as the result, the result follows the specification.

Listing 4.15: Soundness of run fuzz m

1 lemma r u n f u z z m t r i p l e :

2 "<emp>

3 run_fuzz_m n d m v_imps i args_bytes

4 <λr. ↑(r = run_fuzz n d m v_imps i args_bytes)>t"

5

6 lemma r u n f u z z r u n f u z z s p e c :

7 assumes "run_fuzz n d m v_imps i args_bytes = (RValue vs)"

8 shows "run_fuzz_spec m v_imps i args_bytes (v_stack_to_es vs)"

9

10 theorem run fuzz m soundnes s :

11 assumes "execute (run_fuzz_m n d m v_imps i args_bytes) h

12 = Some (RValue vs, h')"
13 shows "run_fuzz_spec m v_imps i args_bytes (v_stack_to_es vs)"

In summary, the verified monadic interpreter can be shown to be sound in end-to-end

usage, as displayed using the example of run fuzz m. This concludes that the relation

between the pure and the monadic interpreter, and therefore the monadic interpreter’s

soundness, is meaningful.
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Chapter 5

Related work

The idea of a proof by refinement of increasingly optimised versions of the program isn’t

new. This approach has been well utilised in the area of SAT solvers [12, 13]. IsaSAT [14],

a SAT solver written and verified in Isabelle, is notable of having won in a competition of

unverified SAT solvers [15]. The Imperative Refinement Framework [16], which IsaSAT

is based on, is an Isabelle library which provides support for refinement proofs, utilising

Imperative HOL and separation logic as the backend for generation of verified imperative

code from a more abstract specification.

The tools used to reason about WebAssembly are not limited to Isabelle. WasmCert-

Coq [17, 18] is a parallel formalisation written using the Coq proof assistant. Similarly

to WasmCert-Isabelle, WasmCert-Coq includes a proof of WebAssembly’s type safety as

well as a verified interpreter.

Formal verification has been also used for languages other than WebAssembly. JSCert

[19], a JavaScript formalisation project, can be considered a predecessor to WasmCert.

It formalised the ES5 revision of JavaScript in Coq, and provided a verified interpreter.

CompCert [20, 21] is an ongoing project aiming to formalise the semantics of C and

produce a verified compiler in Coq; at the time of writing it covers almost all of ISO C 99

and generates code for multiple architectures, including ARM and x86. CakeML [22, 23] is

a similar project utilising the HOL4 theorem prover to implement a verified, bootstrapping

compiler for a subset of Standard ML1. Jinja [6, 24] is a Java-like programming language

with a full formal specification in Isabelle, proof of type safety, and a verified compiler.

1Particularly relevant due to the wide use of languages in the ML family (SML, OCaml) in imple-
menting proof assistants.
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Chapter 6

Conclusions

The project achieved and exceeded its planned goals. As a result, the formally verified

safety guarantees of WebAssembly have been extended to cover module instantiation,

increasing the confidence in the specification. Furthermore, accomplishing the proof of

soundness of the improved interpreter led it to be adopted by the Bytecode Alliance for

testing purposes. It is rare for a formal verification project to have practical ramifications,

which makes industry adoption due to formal verification’s benefits a significant claim.

In this project we focused on partial correctness of the interpreter; knowing that the

interpreter’s output is correct if the interpreter didn’t crash is more important for the use

in testing than knowing that the interpreter doesn’t crash. However, for completeness,

one can further strengthen the proof to use total correctness Hoare triples, as a result

showing that the interpreter does not crash.

Furthermore, while assuming a trusted computing base (which here in particular includes

the OCaml compiler) is commonly accepted practice, one might want to complete an end-

to-end proof. In that case one would have to transition to a complete verified ecosystem

such as CakeML [23] as the backend for the interpreter; I have not tried to estimate the

difficulty of doing so.

This project was feasible only thanks to the current state of formal verification tools:

Isabelle with Sledgehammer [4] made it possible to make progress on the project straight

away without substantial prior experience, and sep auto reduced the amount of work by

an order of magnitude. I expect that formal verification projects will become more and

more common as capabilities and accesibility of the relevant tools improve with time. In

particular, as invaluable as sep auto has been, a significant part of its effective use is

learning its idiosyncracies and limitations; a hypothetical improved version might reduce

the time spent in places where the tool fails due to weird edge cases or unsupported

modes of reasoning, leaving only the cases where genuine insight is required to progress.

Moreover, Sledgehammer is not magic; throughout the project I frequently encountered

fairly uninteresting goals which nevertheless were too complex for Sledgehammer to finish
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off, and so required my closer attention.

Keeping a repository of formal proofs is in many ways similar to software engineering,

and one aspect in particular relevant here is maintenance. It is likely that WebAssembly’s

specification will keep being updated in face of changing requirements; in particular we had

to add support for vector operations, introduced in most recent versions of WebAssembly.

This means that the formal proofs will have to be updated in the future accordingly in

order to keep their relevance.

To summarise, this project further increased the confidence in WebAssembly’s safety and

security, both in terms of veryfing the specification itself, and enabling more testing tech-

niques for WebAssembly engines used in practice. The WasmCert-Isabelle repository

extended by this project, if maintained, will continue preventing issues that might other-

wise occur as WebAssembly evolves during its spread, and improving confidence in their

absence. Finally, hopefully this and other successful examples will further popularise the

use of formal verification to guarantee security and safety.
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Appendix A

Additional listings

Listing A.1: Relating pure config and monadic config m

1 definition "inst_m_assn i i_m ≡
2 inst_m.types i_m 7→a inst.types i

3 * inst_m.funcs i_m 7→a inst.funcs i

4 * inst_m.tabs i_m 7→a inst.tabs i

5 * inst_m.mems i_m 7→a inst.mems i

6 * inst_m.globs i_m 7→a inst.globs i"

7

8 type synonym i n s t a s s o c s = "(inst list × inst_m list)"

9

10 definition i n s t a s s o c s a s s n : : "inst_assocs ⇒ assn" where

11 "inst_assocs_assn ≡ λ(insts, inst_ms). list_assn inst_m_assn insts

inst_ms"

12

13 definition i n s t a t : : "inst_assocs ⇒ (inst × inst_m) ⇒ nat ⇒ bool " where

14 "inst_at ≡ λ(insts, inst_ms) (inst, inst_m) j. j < min (length insts)

(length inst_ms)

15 ∧ insts!j = inst ∧ inst_ms!j = inst_m"

16

17 abbreviation "contains_inst i_s i ≡ ∃j. inst_at i_s i j"

18

19 definition c l m a g r e e j : : "inst_assocs ⇒ nat ⇒ cl ⇒ cl_m ⇒ bool" where

20 "cl_m_agree_j i_s j cl cl_m = (case cl of

21 cl.Func_native i tf ts b_es ⇒
22 (case cl_m of

23 cl_m.Func_native i_m tf_m ts_m b_es_m ⇒
24 inst_at i_s (i, i_m) j ∧ tf = tf_m ∧ ts = ts_m ∧ b_es = b_es_m

25 | cl_m.Func_host tf_m host_m ⇒ False)

26 | cl.Func_host tf host ⇒
27 (case cl_m of

28 cl_m.Func_native i_m tf_m ts_m b_es_m ⇒ False

29 | cl_m.Func_host tf_m host_m ⇒ tf = tf_m ∧ host = host_m)

30 )"
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31

32 definition "cl_m_agree i_s cl cl_m ≡ ∃j. cl_m_agree_j i_s j cl cl_m"

33

34 definition funcs m assn : : "inst_assocs ⇒ cl list ⇒ cl_m array ⇒ assn"

where

35 "funcs_m_assn i_s fs fs_m = (∃A fs_i. fs_m 7→a fs_i *↑(list_all2
(cl_m_agree i_s) fs fs_i))"

36

37 definition tab ins t m assn : : "tabinst ⇒ tabinst_m ⇒ assn" where

38 "tabinst_m_assn = (λ(tr,tm) (tr_m,tm_m). tr_m 7→a tr * ↑(tm = tm_m))"

39

40 definition "mem_m_assn ≡ λ(mr,mm) (mr_m,mm_m). mr_m 7→baRep_mem_rep mr * ↑
(mm_m=mm)"

41

42 definition mems m assn : : "mem list ⇒ mem_m array ⇒ assn" where

43 "mems_m_assn ms ms_m = (∃A ms_i. ms_m 7→a ms_i * list_assn mem_m_assn ms

ms_i)"

44

45 definition tabs m assn : : "tabinst list ⇒ tabinst_m array ⇒ assn" where

46 "tabs_m_assn ts ts_m = (∃A ts_i. ts_m 7→a ts_i * list_assn tabinst_m_assn

ts ts_i)"

47

48 definition "globs_m_assn gs gs_m ≡ gs_m 7→a gs"

49

50 definition s m assn : : "inst_assocs ⇒ s ⇒ s_m ⇒ assn" where

51 "s_m_assn i_s s s_m =

52 funcs_m_assn i_s (s.funcs s) (s_m.funcs s_m)

53 * tabs_m_assn (s.tabs s) (s_m.tabs s_m)

54 * mems_m_assn (s.mems s) (s_m.mems s_m)

55 * globs_m_assn (s.globs s) (s_m.globs s_m)"

56

57 definition l o c s m as sn : : "v list ⇒ v array ⇒ assn" where

58 "locs_m_assn locs locs_m = locs_m 7→a locs"

59

60 definition f c m assn : : "inst_assocs ⇒ frame_context ⇒ frame_context_m ⇒
assn" where

61 "fc_m_assn i_s fc fc_m = (

62 case fc of Frame_context redex lcs nf f ⇒
63 case fc_m of Frame_context_m redex_m lcs_m nf_m f_locs1 f_inst2 ⇒
64 ↑(redex = redex_m ∧ lcs = lcs_m ∧ nf = nf_m ∧ contains_inst i_s (f_inst

f, f_inst2))

65 * locs_m_assn (f_locs f) f_locs1

66 )"

67

68 definition "fcs_m_assn i_s fcs fcs_m ≡ list_assn (fc_m_assn i_s) fcs fcs_m"

69

70 definition c fg m assn : : "inst_assocs ⇒ config ⇒ config_m ⇒ assn" where

71 "cfg_m_assn i_s cfg cfg_m = (

72 case cfg of Config d s fc fcs ⇒
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73 case cfg_m of Config_m d_m s_m fc_m fcs_m ⇒
74 ↑(d=d_m)
75 * s_m_assn i_s s s_m * fc_m_assn i_s fc fc_m * fcs_m_assn i_s fcs fcs_m

76 * inst_assocs_assn i_s

77 )"

The Hoare triples for higher-order functions fold map and list all2 m are written in the

format of deconstruction rules in order to be more usable with sep auto.

Listing A.2: Deconstruction rules for higher-order functions

1 lemma f o ld map decon :

2 assumes "list_all R xs"

3 assumes "
∧
x. R x ⇒ <P> f x <λr. Q x r * P>"

4 assumes "
∧
ys. list_assn Q xs ys * P ⇒A Q' ys"

5 shows

6 "<P> Heap_Monad.fold_map f xs <Q'>"
7

8 lemma l i s t a l l 2 m d e c o n :

9 assumes "
∧

x y. <P> f_m x y <λr. ↑(r = f x y) * P>"

10 assumes "P ⇒A Q' (list_all2 f xs ys)"

11 shows

12 "<P> list_all2_m f_m xs ys <Q'>"

Listing A.3: Fuzzing using the monadic interpreter

1 fun run fuzz m : : "fuel ⇒ depth ⇒ m ⇒ v_ext list ⇒ nat ⇒ bytes list ⇒
res Heap" where

2 "run_fuzz_m n d m v_imps i args_bytes = do {

3 init_s ← make_empty_store_m;

4 i_res ← interp_instantiate_init_m init_s m v_imps;

5 case i_res of

6 (s', RI_res_m inst v_exps es) ⇒
7 (case es of

8 [] ⇒ (if i < length v_exps then

9 case (E_desc (v_exps!i)) of Ext_func j ⇒ do {

10 cl ← Array.nth (s_m.funcs s') j;

11 case (cl_m_type cl) of

12 (t1 _> t2) ⇒
13 if length args_bytes length t1 then

14 (let params = map2 wasm_deserialise args_bytes t1 in

15 do {

16 (s'', res) ← run_invoke_v_m n d (s', params, j);

17 return res })

18 else return (RCrash (Error_invariant (STR ''not enough

arguments'')))
19 } | _ ⇒ return (RCrash (Error_invariant (STR ''not a

function'')))
20 else return (RCrash (Error_invariant (STR ''out of
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bounds''))))
21 | _ ⇒ return (RCrash (Error_invalid (STR ''not run fully''))))
22 | (s', RI_crash_m res) ⇒ return (RCrash res)

23 | (s', RI_trap_m msg) ⇒ return (RTrap msg) }"
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